Distorted Mass Edges at LHC from supersymmetric Leptoquarks

Daniel Wiesler

DESY Hamburg

SUSY 2011, Monday, August 29th

Distorted Mass Edges at LHC

from supersymmetric Leptoquarks

Daniel Wiesler

Introduction

Sample model setup P&D of exotics

Exotic fermion characteristics
Physiognomy of edges
Robustness of effect

Conclusions

with J.Reuter, based on Phys. Rev. D84 (2011) 015012.

Introduction

Sample model setup P&D of exotics

Distortion of Edges

Exotic fermion characteristics Physiognomy of edges Robustness of effect

Conclusions

Distorted Mass Edges at LHC

from supersymmetric Leptoquarks

Daniel Wiesler

Introduction

Sample model setup P&D of exotics

Exotic fermion characteristics

characteristics
Physiognomy of edge
Robustness of effect

Sample model setup

Some model facts

- ▶ E₆ SUSY GUT w/ two-step unification
- ► NMSSM-like μ-problem solution
- ► Higgs-matter unification
- solution of doublet-triplet splitting problem:
- existence of TeV scale exotics contained in 27: colored iso-singlet scalars and fermions
- \blacktriangleright more on E_6 in e.g. Antonio Morais talk (PS 9)

Distorted Mass Edges at LHC

from supersymmetric Leptoquarks

Daniel Wiesler

Sample model setup

P&D of exotics

Exotic fermion characteristics Physiognomy of edge Robustness of effect

Conclusions

based on F. Braam, A. Knochel, J. Reuter, JHEP 1006 (2010) 013.

Decomposition of the fundamental 27

	<i>SU</i> (3) _C	SU(2) _L	$U(1)_Y$	U(1)'
\hat{Q} \hat{u}^c \hat{d}^c	3 3 3	2 1 1	1/3 -4/3 2/3	Q_Q' Q_u' Q_d'
\hat{L} \hat{e}^c	1 1	2 1	-1 2	Q_L' Q_e'
Ĥ ^u Ĥ ^d D̂ D̂ ^c	1 1 3 3	2 2 1 1	1 -1 -2/3 2/3	Q'_{H^u} Q'_{H^d} Q'_D Q'_{D^c}
ν̂ ^c Ŝ	1 1	1 1	0 0	$Q_{ u^c}^{\prime}$ Q_S^{\prime}

Distorted Mass Edges at LHC

from supersymmetric Leptoquarks

Daniel Wiesler

. .

Sample model setup P&D of exotics

Exotic fermion characteristics Physiognomy of edges Robustness of effect

nclusions

Production and decay of exotic fermions

- dominant decays to sfermion/sm-fermion pair
- scalar/gaugino mode suppressed due to typically heavier scalar mass
- ► all figures & numbers using WHIZARD (projects.hepforge.org/whizard)

- x-secs @ LHC14: 10^{-3} fb $\to 10^{5}$ fb
- single production dominant for high masses (ps effect)
- but: dependence on coupling ($\lambda = e \approx 0.312$)

Distorted Mass Edges at LHC

from supersymmetric Leptoquarks

Daniel Wiesler

Introduction

P&D of exotics

Exotic fermion characteristics Physiognomy of edge Robustness of effect

Final state selection

- sfermion/fermion decay of exotics dominate
- ▶ final states of pair production: 2 jet + 2 lepton + MET
- ▶ (single production: 1 jet + 2 lepton + MET)
- backgrounds include gluino pair, associated gluino-squark and squark pair production
- ▶ former two under fairly good control through cuts (p_T (jet) > 100 GeV on parton level)
- \blacktriangleright x-secs of backgrounds roughly of comparable size (10 $^{-1}$ fb \rightarrow 10 6 fb)

Distorted Mass Edges at LHC

from supersymmetric Leptoquarks

Daniel Wiesler

Introduc

Sample model setup
P&D of exotics

Exotic fermion characteristics Physiognomy of edge Robustness of effect

C---I....

Some exotic fermion characteristics

- ▶ Leptoquarkino w/ intrinsic negative R-parity → sparticle-like decay through long cascades
- Dependent upon SUSY breaking / spectrum, there is a special feature:
- ightharpoonup kinematic endpoint of M_{ql} is equivalent to vanilla MSSM-like dilepton edge: no spin correlation between quark and lepton due to intermediate scalar
- dirac instead of majorana fermion

$$m_{ql}^{max} = \left[\frac{(m_{\tilde{e}_{R(L)}}^2 - m_{\tilde{\chi}_1^0}^2)(m_D^2 - m_{\tilde{e}_{R(L)}}^2)}{m_{\tilde{e}_{R(L)}}^2} \right]^{\frac{1}{2}}$$

Distorted Mass Edges

from supersymmetric Leptoquarks

Daniel Wiesler

Introduction

Sample model

Distortion of Edges

Exotic fermion characteristics

Robustness of effect

Example of a typical event

- ▶ consider e.g. 2 jet + 2 lepton + MET final state
- comparison yields fundamentally different nature of intermediate state(s)
- strong phenomenological implications arise

Distorted Mass Edges at LHC

from supersymmetric Leptoquarks

Daniel Wiesler

Introductio

Sample mo

Distortion of Edges

Exotic fermion characteristics

Robustness of effect

Physiognomy of edges I

- ▶ exotics have baryon & lepton numbers
 → concentrate on jet/lepton variables
- **b** best guess is m_{lq} , direct observation yields:

▶ Inability to experimentally combine correct jet/lepton pair requires intro of $m_{ql,high}$ and $m_{ql,low}$

$$m_{ql,high} = \max\{m_{ql^+}, m_{ql^-}\}$$

 $m_{ql,low} = \min\{m_{ql^+}, m_{ql^-}\}$

Distorted Mass Edges

from supersymmetric Leptoquarks

Daniel Wiesler

Introduction

P&D of exotics

Exotic fermion characteristics Physiognomy of edges

Physiognomy of edges II

- speciality: maximization over lepton pair yields uncorrelated jet/lepton pairs from two 'sides' of decay cascades for signal
- ▶ result: tail in $m_{ql,high}$ (compared to tail-less vanilla MSSM)
- important: not to be misidentified as squark analysis with wrong combinatorics!

Distorted Mass Edges at LHC

from supersymmetric Leptoquarks

Daniel Wiesler

Introductio

P&D of exotics

Exotic fermion characteristics
Physiognomy of edges

Robustness of effe

Physiognomy of edges III

- ▶ alternative jet/lepton variables including endpoint features are e.g. m_{ql}^* or m_{qll}
- bonus: definition of m_{lq}^* intrinsically free of combinatorical issues (but still suffering from admixture of uncorrelated leptons)

$$m_{ql}^* = m(\min_{E}\{j_1, j_2\}, \max_{E}\{l^+, l^-\})$$

Distorted Mass Edges

from supersymmetric Leptoquarks

Daniel Wiesler

Introduction

Sample model setu

Exotic fermion characteristics

Physiognomy of edges Robustness of effect

Digging out the Signal

Use difference in lepton correlation:

- In vanilla MSSM signal correlation yields clear endpoint structure
- Exotic signal leptons mostly uncorrelated
- Cut above edge drastically reduces standard SUSY backgrounds

Distorted Mass Edges

from supersymmetric Leptoquarks

Daniel Wiesler

Introduction

Sample model setup P&D of exotics

Exotic fermion

Physiognomy of edges

Robustness of effect

- ▶ In the following, we show impact of 4 exotic masses embedded into two different SPS spectra (mSUGRA (SPS3) + GMSB (SPS7))
- effect is stable and hardly dependent upon scenario
- only relative mass difference to underlying spectrum is relevant

Distorted Mass Edges at LHC

from supersymmetric Leptoquarks

Daniel Wiesler

Introduction

Sample model setup P&D of exotics

Exotic fermion characteristics Physiognomy of edges Robustness of effect

C---I...:---

Mass scans w/ SPS3

Distorted Mass Edges at LHC

from supersymmetric Leptoquarks

Daniel Wiesler

Robustness of effect

Distortion features

- $ightharpoonup m_{gl,low}$ not particularly useful to disentangle exotic signals
- $ightharpoonup m_{ql,high}$ and m_{ql}^* show most promising distortions
- notice steplike endpoint feature due to multiple possible intermediate states (here:sleptons)
- lacktriangle deviation dominates for $M_D \ll M_{ ilde{q}}$ and naturally washes out for $M_D \gg M_{\tilde{a}}$

Distorted Mass Edges at LHC

from supersymmetric Leptoquarks

Daniel Wiesler

Robustness of effect

Mass scans w/ SPS7

Distorted Mass Edges at LHC

from supersymmetric Leptoquarks

Daniel Wiesler

Introduction

P&D of exotics

xotic fermion

Physiognomy of edge

Conclusions

- Most B(MS)SM models introduce new particles, which may distort standard kinematic observables
- Origin of effect is model independent: difference in spin of intermediate particle
- Misidentified combinatorical issues in e.g. squark analyses are able to (re)produce similar effect → careful and elaborate study necessary!
- ▶ After all: discovery of such exotic matter content could provide a handle on underlying GUT scale structure

Distorted Mass Edges

from supersymmetric Leptoquarks

Daniel Wiesler

Introdu

P&D of exc

Exotic fermion characteristics
Physiognomy of edge

Backup

Distorted Mass Edges at LHC

from supersymmetric Leptoquarks

Daniel Wiesler

Introduction

Sample model setup P&D of exotics

Exotic fermion characteristics Physiognomy of edges Robustness of effect

Backup

Distorted Mass Edges at LHC

from supersymmetric Leptoquarks

Daniel Wiesler

Industrial

Sample model setup P&D of exotics

Exotic fermion characteristics Physiognomy of edges Robustness of effect